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1. Introduction

The assessment of the reliability of modern industrial systems 
has to take into account various system characters since systems are 
becoming increasingly large and complex. As an example, reliability 
models have to take into account characteristics such as dynamic be-
havior [32], multiple failure mechanisms [10], components dependent 
relationships, uncertainties, etc. [15, 18]. Several conventional combi-
natorial methods have been developed and proved to be effective tools 
for system reliability modelling and assessment, including reliability 
block diagram (RBD), fault tree analysis (FTA) [12], Markov chains, 
Bayesian network [11, 23], etc. Nevertheless, when considering mod-
el performance, computational efficiency and executive complexity, 
these traditional models present advantages, but also serious limita-
tions [3]: (i) Static fault tree and RBD model can map system com-

ponents to events, but fail to capture the dynamic behavior; dynamic 
fault tree models are needed to model time-dependent behaviors, in-
creasing significantly the complexity of the investigated model. (ii) 
Markov chain can deal with dynamic behavior, but it is limited to 
exponential distribution for failure behaviors. Markov chain is also 
faced with state space exponential explosion problems when applied 
to systems of large size, Because Markov chain method consider all 
relationships among parent nodes, children nodes, and even sharing 
nodes. (iii) Due to conditional independence assumptions between 
the random variables and dependence separation among the nodes in 
Bayesian network, a child node in a Bayesian network is only affected 
by a limited number of parent nodes [11, 12]. (iv) Otherwise, Bayes-
ian networks provide a powerful capability of probability reasoning, 
dynamic behavior modeling and multi-model synthesis [23]. These 
advantages prompt Bayesian network to be a widely used method in 
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When dealing with modern complex systems, the relationship existing between components can lead to the appearance of various 
dependencies between component failures, where multiple items of the system fail simultaneously in unpredictable fashions. These 
probabilistic common cause failures affect greatly the performance of these critical systems. In this paper a novel methodology 
is developed to quantify the importance of common cause failures when hybrid uncertainties are presented in systems. First, the 
probabilistic common cause failures are modeled with Bayesian networks and are incorporated into the system exploiting the α 
factor model. Then, probability-boxes (bound analysis method) are introduced to model the hybrid uncertainties and quantify the 
effect of uncertainties on system reliability. Furthermore, an extended Birnbaum importance measure is defined to identify the 
critical common cause failure events and coupling impact factors when uncertainties are expressed by probability-boxes. Finally, 
the effectiveness of the method is demonstrated through a numerical example.
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W przypadku nowoczesnych systemów złożonych, relacje zachodzące między komponentami mogą prowadzić do pojawienia się 
różnych zależności między ich uszkodzeniami, a tym samym do sytuacji w których kilka składowych systemu ulega uszkodzeniu 
jednocześnie w nieprzewidywalny sposób. Tego typu probabilistyczne uszkodzenia wywołane wspólną przyczyną (PCCF) mają 
ogromny wpływ na wydajność tych kluczowych systemów. W przedstawionym artykule opracowano nową metodę szacowania 
ważności PCFF w sytuacjach, gdy w systemie występują niepewności hybrydowe. W pierwszej kolejności, PCFF zamodelowano 
za pomocą sieci bayesowskich i włączono do systemu wykorzystującego model współczynnika α. Następnie, wprowadzono prze-
działy prawdopodobieństwa, tzw. probability boxes (bound analysis method), w celu zamodelowania niepewności hybrydowych i 
kwantyfikacji wpływu tych niepewności na niezawodność systemu. Ponadto zdefiniowano rozszerzoną miarę ważności Birnbauma, 
która pozwala zidentyfikować krytyczne zdarzenia PCCF oraz czynniki, które je wywołały, w przypadkach, gdy niepewności wyra-
żone są za pomocą probability boxes. Skuteczność metody wykazano na przykładzie numerycznym.

Słowa kluczowe: probabilistyczne uszkodzenie spowodowane wspólną przyczyną, sieć bayesowska, model 
współczynnika α, rozszerzona miara ważności Birnbauma.
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reliability modelling and assessment of a diversity of large engineer-
ing systems. 

In engineering practice, unavoidable uncertainties are of utter-
most importance for system reliability assessment. The combination 
of both aleatory (stochastic) uncertainty and epistemic (lack of knowl-
edge) uncertainty leads to the framework called “mixed uncertainty” 
or “hybrid uncertainty”, and it is ubiquitous in engineering systems 
[4]. Uncertainties mainly arise from the following aspects: observa-
tional uncertainty, model uncertainty and parametric uncertainty. The 
purpose of uncertainty analysis is developing advanced approaches to 
reduce those uncertainties, thus leading to more accurate analysis and 
assessment of system reliability [29]. The uncertainty characterization 
models can be divided into three types: classic probabilistic analysis, 
non-probabilistic models, and imprecise probability model. Imprecise 
probability models, including evidence theory [7, 14], probability-box 
(p-box) theory [8], fuzzy probability theory [25, 28], etc. have been 
proved to be more appropriate for hybrid uncertainty. In particular, 
the essence of p-box theory is the combination of classic probability 
theory and interval arithmetic, it’s a very effective tool to treat im-
precise probabilities, allowing for the comprehensive propagation of 
hybrid uncertainty [6, 24]. 

As defined by the Nuclear Energy Agency (NEA), common cause 
failures (CCFs) are the simultaneous failure events of two or more 
components in the same common cause component group (CCCG). 
CCFs are caused by shared initiating events which also called “cou-
pling impact factors” [30]. CCFs directly connect the failure event 
with root causes; thus, research work on CCFs can build the cause-
effect relationship between components failures and failure causes. 
Multiple of parametric models, such as β-factor model and α-factor 
models, generically classified as “ratio models” have been developed 
for quantification of CCFs. In addition, additional CCF models allow 
for direct representation of the CCF events, such as the square-root 
method; and shock models, such as binomial failure rate model, have 
also been proposed. For reliability analysis and assessment of system 
with CCFs, these parametric models have been extended to incorpo-
rate CCFs into system fault tree model [13, 16], Bayesian network 
model [17], etc. These methods are especially widely used in probabi-
listic safety assessment of large complex systems with high reliability 
and long lifetime requirements [9]. 

Probabilistic CCF (PCCF) is a generalized model of CCF that 
can characterize the simultaneous failures of components in CCCGs 
with different probability of occurrence. When employing ratio mod-
els for PCCF analysis, even if the β-factor model is the most widely 
used method thanks to its simplicity, α-factor model is receiving in-
creased interest as well since it can model multiplicities of CCFs and 
can build a bridge between failure events and coupling causes [31]. 
When dealing with the reliability assessment of systems taking into 
consideration PCCFs by means of static fault tree model, some ex-
plicit and implicit modelling methods were proposed by Wang, et al. 
[26] to estimate the reliability of systems with arbitrary components 
types and different component failure distributions. Thereafter, Wang, 
et al. [27] extended these models and proposed both an explicit and 
implicit method to analyze reliability of phased-mission systems with 
PCCFs. Zhu, et al. [33] proposed a stochastic computational approach 
to deal with the reliability overestimate of dynamic fault trees with 
PCCFs when dynamic behaviors are considered in redundant system. 
Additionally, when epistemic uncertainty are also present in systems, 
Zuo et al. [34] evaluated the system reliability when PCCFs are speci-
fied as interval value based on evidential network, and the Birnbaum 
importance was extended to measure the contribution of components 
to system reliability. Based on evidential network, Qiu et al. [21] pro-
posed a valuation-based system method for system reliability analysis 
with consideration of parametric uncertainty and CCFs. Mi, et al. [17] 
incorporated CCFs and uncertainties into evidential network to study 
the reliability of multi-state systems. These methods mainly focus on 

epistemic uncertainty and CCFs, and it needs to be emphasized that 
there still lack of research work on system reliability when hybrid 
uncertainties and PCCFs are both considered.  

Hence, in recent years, the research works of CCF are mainly fo-
cusing on the quantification models and method extensions, while few 
works are carried on estimation of the importance measure of differ-
ent types of CCFs and of impact factors to system reliability [1, 22], 
especially when aleatory uncertainty and epistemic uncertainty are 
unavoidably, present in systems. This research gap will be of consid-
erable significance to safety critical industrial areas seriously affected 
by CCFs, such as aerospace and nuclear industry. The ranking of CCF 
events and impact factors can give explicit guidance for system renew 
design, and also meaningful for maintenance measure formulating 
and fault eliminating.

To evaluate the importance of various CCF events to system reli-
ability, the CCF events should be modelled and expressed in system 
reliability model. Therefore, this paper is organized as follows, firstly, 
the CCF events are modelled by Bayesian network based on alpha 
factor model, and incorporated into system Bayesian network. Then 
the hybrid uncertainties are expressed by p-boxes, and the Birnbaum 
importance are extended as EBI (extended Birnbaum importance) 
which can be used to define the importance of CCF events to system 
reliability. Finally, a numerical example is used to realize the impact 
measure of CCF to system reliability.

2. Common Cause Failure Modeling Based on Bayesian 
Network

2.1. Parametric model for common cause failure

α-factor model is a multiparameter method which can be used to 
quantify all kinds of CCFs. The definition of the α-factor, indicated as 
αk, is the fraction of the total failure probability of events that occur in 
the system and involve the failure of k components caused by a com-
mon cause. For a common cause component group (CCCG) with m 
components in the same type, which also called a CCCG of size m, the 
sum of all αk equals to 1. After a series of experiments, the number of 
basic failure events is collected, and the number of failure events with 
k components failure based on a common cause is nk which can be 
computed by weighted impact vector method [19, 20]. Then the alpha 
factor can be estimated by using the maximum likelihood estimator 
when there are sufficient test data, and:
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Then, a common cause vector ααCCCG
m  is defined to represent the 

effect degree of different CCF events on failure of each component in 
a CCCG of size m  and:

 ααCCCG
m

i m= [ ]α α α1,..., ,...,  (2)

Besides, since β factor model can only get an approximate scope 
by engineering experiences, but α factor model has the ability of inte-
grating experts’ judgments of system and past data, which makes it to 
be a more suitable parameter model in practice engineering. When the 
total failure probability of a component is Pt, the occurrence probabil-
ity of the corresponding failure events for staggered testing is given 
by:
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When the occurrence probability of component Pt is specified, al-
pha factors can be calculated by Eqs. (1) and (2), then the occurrence 
probabilities of different CCF scenarios can be calculated by Eq. (3).

2.2. Bayesian network modeling of component in common 
cause component groups

Bayesian networks are a widely used methodology for reliabil-
ity modelling; they are composed of nodes, which represent binary 
state random variables, and edges, which represent dependencies 
between these variables, respectively. In a Bayesian network with n 
nodes, where Xi is the corresponding random variable of node i, for 
any Xi (i=1,…,n), there exists π ( ) { ,..., }X X Xi i⊆ −1 1  which causes 
variable Xi to be conditional independent from all the variables in the 
set 1 1{ ,..., }iX X − . Thus, based on the chain rule and conditional in-
dependence of Bayesian network, the joint distribution of n variables 
can be derived by the following formula as:

 P X X P X X X P X Xn i i
i

n
i i

i

n
1 1 1

1 1
,..., ,...,( ) = ( ) = ( )( )−

= =
∏ ∏ π       (4)

When ( )iXπ = ∅ , the conditional distribution ( ( ))i iP X Xπ  
will degrade into the marginal distribution P(Xi). Thanks to the de-
composition of joint distribution, it is possible to greatly reduce the 
complexity of a Bayesian network model.

In this framework, the failure event of a component in a CCCG 
can be decomposed based on Eq. (3). For example, for a component 
X in a CCCG with 3 components, the failure event of a component, 
e.g. the failure event identified by the random variable X1, can be 
further characterized as independent failure, X1-ind, two components 
CCF, X12 and X13, and three components CCF, X123. Then, the Bayes-
ian network of the failure of the component can be built as shown in 
Fig. 1. Based on the conditional independence between variables and 
reasoning mechanism of Bayesian network, the probability of com-
ponent X1 is:
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Fig. 1. BN of decomposed component in CCCG of size 3

When an arbitrary independent failure event or CCF event oc-
curs, the failure of component will be triggered. By using 0 and 1 
to represent the failure and functioning states of X, respectively, the 
conditional probability table (CPT) of node X is listed in Table 1.

In the case when 3 components of the same type are connected 
in a parallel system, the failure of each component within the CCF 
events is represented through a Bayesian network shown in Fig. 1, and 
the Bayesian network of the whole system can be further assembled 
and it is shown in Fig. 2. Finally, the probability of the system can be 
evaluated by exploiting the forward reasoning of Bayesian network 
and Eq. (4), and expressed as:
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When the CPTs and marginal distributions are given, the system 
reliability can be further evaluated.

3. Bayesian Network Reasoning and Extended Impor-
tance Measure under Hybrid Uncertainties

3.1. Probability-box for uncertainty expression 

The term “hybrid uncertainties” is used to identify uncertainty 
quantification and propagation procedures that include both aleatory 
uncertainty and epistemic uncertainty. The aleatory uncertainty char-
acterizes the inherent randomness typical of some physical processes 
which cannot be eliminated or reduced and is quantified by means of 
probability theory. On the other hand, epistemic uncertainty is present 
in systems due to lack of knowledge, insufficient data, etc., but it can 
be reduced by providing more data and increasing the knowledge of 
the system. P-box theory has been proved to be an effective method 

Table 1. CPT of decomposed component

Xind X12 X23 X123
X

0 1

0 0 0 0 1 0

0 0 0 1 1 0

… … … … … …

1 1 1 1 0 1

Fig. 2. BN of 3 component parallel system with CCFs
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to analyze aleatory and epistemic uncertainty in systems. The prob-
ability expression of p-box boundaries includes the aleatory uncertain 
information of system performance, while the area between the upper 
and lower bounds represent the epistemic uncertain information. 

For a random variable X affected by hybrid uncertainty, its prob-
ability distribution is not identified by a unique cumulative distribu-
tion ( )XF t , but by an upper and lower bound, consisting of a p-box 
[ ( ), ( )]X XF t F t . The overall slant of a p-box represents aleatory uncer-
tainties; while the epistemic uncertainty is represented by the breadth 
between the upper and lower bound of the p-box. Based on this defi-
nition, the p-box is extended and used in system reliability analysis, 
sensitivity analysis, risk analysis, etc. 

As an example of p-box appearing in the estimation of the re-
liability of a system, let’s consider the case when the lifetime of a 
component is assumed to follow a Weibull distribution. The shape 
parameter β and scale parameter η are affected by imprecise informa-
tion and defined as interval parameters, which varies in [ , ]β β  and 
[ , ]η η , respectively.The lifetime of a component is described by a 
non-negative random variable Xi on the real number  , and ( )iR t  
and ( )iR t  are the bounding reliability functions for random variable 
X, and ( ) { }i iR t P X t= > . Then the p-box variable which is employed 
to express the system reliability can be defined as [17]:

 ( ) ( ) ( ) ( ){ },i i i i iR t t R t R t R tℜ = ∀ ∈ ≤ ≤

 (7)

For example, for a component with lifetime distribution follows 
Weibull distribution where the scale parameter is within the interval 
[1.68, 1.86] and the shape parameter is within interval [2.08, 2.32], 
the Weibull p-box is constructed by taking the envelopes of those dis-
tributions and is shown in Fig. 3.

3.2. Bayesian network reasoning with hybrid uncertainty

For a Bayesian network with n+m+1 nodes, the variables of n 
root nodes are represented as ix  (i=1,2,…,n), the variables corre-
spond to intermediate nodes is jy  (j=1,2,…,m), the leaf node vari-
able is T, based on the chain rule of Bayesian network, the system 
reliability can be calculated by the following equation
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where ( )Tπ  is the parent of leaf node T, and ( )myπ  represents the 
parent of intermediate node ym. When hybrid uncertainties are taken 
into account in the system, and the reliability of basic components is 
expressed by p-boxes in Eq. (7), then, the occurrence probability of 
decomposed independent failure events and CCF events can be ob-
tained by Eq. (3) when the alpha factors are given or estimated. Since 
the reliability function is a monotone decreasing function, the p-box 
of the system reliability can be further derived and expressed as:
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         (9)

After the upper and lower bound of system reliability p-
box are obtained, the hybrid uncertainty of system can be intui-
tively shown. 

3.3. Extended Birnbaum importance measures

The Birnbaum importance measure has been commonly 
used to evaluate the contributions of components to the reli-
ability of binary coherent system. In this paper we focus on the 
dependent failure especially CCFs. The failure events of the 
components are originally not independent; however, after the 
decomposition of the component failure events by partial alpha-
factor model, the decomposed basic events are independent [2]. 
The Birnbaum importance measure can be further extended and 
employed to evaluate the contributions of CCF events and inde-
pendent events to the system reliability.

For a Bayesian network which has n root nodes and com-
posed of both CCF events and independent failure events, and 
where 1

K
kkn m== ∑ , the system reliability is represented as 

1
( ,..., ,..., )

j nS x x xR p p p . In addition, the state of component or 
event j, indicated by xj, is considered. xj = 0 represents the j-th 
component in a false state, while xj = 1 represents the event 
j as true. By explicitly assigning these two possible states to 

the j-th component, the reliability of the system at where xj is ei-
ther 0 or 1 is expressed as 

1 1 1
( ,..., ,0, ,..., )

j j nS x x x xR p p p p
− +

 and 

1 1 1
( ,..., ,1, ,..., )

j j nS x x x xR p p p p
− +

, respectively. Then, by extending 
the basic definition of BI, which is defined as the partial derivative 
of the system reliability function, the extended Birnbaum importance 
(EBI) of the event j is defined as:

Fig. 3. Example reliability p-box with Weibull distribution
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where 
jxp is the occurrence probability of event j. The EBI measure 

can be used to rank the importance of failure event i when aleatory 
uncertainties are exclusively considered. However, when epistemic 
uncertainty is also present in the system, and the reliability of the 
components is represented by p-boxes (refer to Section 3.1), then p-
box which used to express the extended BI of event j can be further 
obtained and calculated by:
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I L US
j j j ji j

x
EBI EBI t t EBI t EBI t EBI t

p
∂ℜ

= = ∀ ∈ ≤ ≤
∂

     (11)

where the lower bound and upper bound of EBI can be further com-
puted by the following two global optimization algorithms:
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After the BIs of varieties of CCF events are obtained and ex-
pressed by p-boxes, the interval-valued BI at specific time t can also 
be derived, then the ranking of the contribution of CCF events to sys-
tem reliability can be further obtained. 

4. Case Study

4.1. System description

An arbitrary 13-component non-repairable complex system in 
Ref. [5] is used to illustrate the proposed method in this section. The 
compound system is further transformed into series-parallel system as 
shown in Fig. 4. All 13 components can be divided into 5 groups, and 
the components in the same group have the same lifetime distribu-
tion. The components classification and corresponding hypothetical 
lifetime distributions are defined in Table 2.

4.2. Reliability analysis of the system

The reliability modeling and analysis of the example system is 
carried out with the following steps:

Step 1: Develop the Bayesian network model of the system with-
out considering CCFs and hybrid uncertainty. Based on the system 

structure in Fig. 4, the Bayesian network of the system is constructed, 
as shown in Fig. 5. The nodes 1 to 13 correspond to the basic failure 
events of 13 basic components, while the nodes 14-15 are the inter-
mediate nodes and finally node 25 is the leaf node, used to represent 
the event of system failure. The CPTs of a simple 3 nodes Bayesian 
network structure under series and parallel system structure are shown 
in Table 3, and the CPTs of a Bayesian network structure with more 
nodes can be easily inferred based on the system structure and failure 
mechanisms., The system reliability can be obtained by means of in-
ference of the Bayesian network, and it is shown in Fig. 6. In order to 
validate the proposed approach, the system reliability from Bayesian 
network is compared the reliability computed by survival signature; 
the two results agree very well, proves the validity of the proposed 
method.

Step 2: System reliability without CCF events but with hybrid 
uncertainties. When aleatory uncertainty and epistemic uncertainty 
are considered in this system, the system Bayesian network is rep-
resented by the same structure as shown in Fig. 5. The upper bound 
and lower bound of system reliability can be calculated based on 
Eqs. (10) to (12), and are shown in Fig. 7. By contrast, the results 
obtained by survival signature method within those two conditions: 
(1) with consideration of hybrid uncertainties; (2) without hybrid 
uncertainties. The results are also shown in Fig. 7. It shows that 
regardless of whether or not the hybrid uncertainties are considered, 
the system reliability computed by survival signature and traditional 
Bayesian network is with consistent, and these results are within 
the upper and lower bounds which calculated by p-box method. The 

Fig. 5 System Bayesian network without CCFs

Table 2. Parameters of system components

Comp. type Dist. type Dist.  parameters Imprecise Dist. parameters CCF parameters

1 (1, 2) Wb (1.8,2.2) ([1.68,1.86], [2.08,2.32]) {0.95,0.05}

2 (3-6) Exp 1.2 [1.07,1.33] {0.8,0.1,0.05,0.05}

3 (7) Wb (2.3,1.6) ([2.12,2.51], [1.38,1.72]) {1}

4 (8, 9) Wb (3.2,2.6) ([2.99,3.41], [2.51,2.97]) {0.9,0.1}

5(10-13) Exp 2.1 [2.01,2.28] {0.75,0.1,0.1,0.05}

Fig. 4. The structure of example complex system
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trend of the system reliability contains the aleatory uncertain infor-
mation of system, and the breadth of reliability p-box can clearly 
reveal the epistemic uncertainty of system.

Step 3: Develop the Bayesian network model of system with CCF 
events. Based on the CCF modeling method illustrated in Section 2, 
a new Bayesian network model of this example system can be built 
and shown in Fig. 8. Where the nodes 1 to 37 are independent failure 
events of components and various different CCF seniors of CCFGs, 
nodes 38 to 49 correspond the basic failure events of 13 components, 
nodes 50 to 60 are the intermedia nodes, and the system failure events 
is represented by node 61. The CPTs of nodes in components layer are 
similar to Table 1.

Based on the partial alpha factor model, the probabilities of inde-
pendent failures and various CCF events can be calculated by Eqs. (1) 
to (3). Then system reliability can be further computed and shown in 

Fig. 9. The reliability of the system is decreased with a more serious 
tendency when CCFs are considered, which further shows the signifi-
cant influence of CCF events to system reliability.

Fig. 6 System reliability ignore uncertainties and CCFs

Fig. 8. System Bayesian network with CCFs

Fig. 9. System reliability with CCF and hybrid uncertainties 

Fig. 7. System reliability with hybrid uncertainties

Table 3. The CPTs of 3 nodes Bayesian network under series and parallel system structure 

X1 X2
Y (Series)

X1 X2
Y (Parallel)

0 1 0 1

0 0 1 0 0 0 1 0

0 1 1 0 0 1 0 1

1 0 1 0 1 0 0 1

1 1 0 1 1 1 0 1
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4.3. Importance analysis of components and common cause 
failures

Based on Eqs. (10) to (12), the importance of all types of compo-
nents without considering CCFs can be calculated and shown in Fig. 10. 
Then the ranking of component importance is RI(Type5)>RI(Type2)> 
RI(Type1)>RI(Type4)>RI(Type3). In order to indicate the effect of 
uncertainties to component importance, the importance of component 
type 5 with uncertainties is shown in Fig. 11. There is a big difference 
of type 5 after considering uncertainties, and there is an intersection 
between the lower and upper bound of importance.

To indicate the importance of CCFs to system, based on the defi-
nition in Section 3.3, as shown in Fig. 12, the EBIs of various CCFs 
of component type 5 are computed. Then the importance ranking of 
various CCF events can be gotten at any specific time. Furthermore, 
after getting the impact factors of CCFs, it will give a more accurate 
guide for system design and maintenance measure making. 

5. Conclusions

This paper mainly discusses the importance measure of CCF 
events to system reliability with consideration of hybrid uncertainties. 
Firstly, considering the existing theory research of CCF and system 
modeling, we primarily model the system reliability by Bayesian net-
work, and then the CCFs are incorporated into system Bayesian net-
work model based on alpha factor model. The result compared with 
survival signature shows the validity of Bayesian network model and 
CCFs can decrease system reliability with a heavy tendency. When 
considering hybrid uncertainties in system, we extend the Birnbaum 
importance for CCF events on the basis of p-box and get the upper 
and lower bounds by global optimization algorithm. Finally, through 
a numerical study, the importance p-boxes of various CCF events are 
calculated and the changing diagrams about importance are gotten, 
the results identify the effectiveness of the proposed method. This pa-
per only measures the importance of various CCF events to system 
reliability, in the future work, the importance of coupling common 
causes to system reliability should be further investigated which can 
provide a guidance for system design and maintenance.
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